Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 8: 693997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277668

RESUMO

Changes of lipidic storage, oxidative stress and mitochondrial dysfunction may be involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Although the knowledge of intracellular pathways has vastly expanded in recent years, the role and mechanisms of circulating triggering factor(s) are debated. Thus, we tested the hypothesis that factors circulating in the blood of NAFLD patients may influence processes underlying the disease. Huh7.5 cells/primary human hepatocytes were exposed to plasma from 12 NAFLD patients and 12 healthy subjects and specific assays were performed to examine viability, H2O2 and mitochondrial reactive oxygen species (ROS) release, mitochondrial membrane potential and triglycerides content. The involvement of NLRP3 inflammasome and of signaling related to peroxisome-proliferator-activating-ligand-receptor-γ (PPARγ), sterol-regulatory-element-binding-protein-1c (SREBP-1c), nuclear-factor-kappa-light-chain-enhancer of activated B cells (NF-kB), and NADPH oxidase 2 (NOX2) was evaluated by repeating the experiments in the presence of NLRP3 inflammasome blocker, MCC950, and through Western blot. The results obtained shown that plasma of NAFLD patients was able to reduce cell viability and mitochondrial membrane potential by about 48 and 24% (p < 0.05), and to increase H2O2, mitochondrial ROS, and triglycerides content by about 42, 19, and 16% (p < 0.05), respectively. An increased expression of SREBP-1c, PPARγ, NF-kB and NOX2 of about 51, 121, 63, and 46%, respectively, was observed (p < 0.05), as well. Those effects were reduced by the use of MCC950. Thus, in hepatocytes, exposure to plasma from NAFLD patients induces a NAFLD-like phenotype by interference with NLRP3-inflammasome pathways and the activation of intracellular signaling related to SREBP-1c, PPARγ, NF-kB and NOX2.

2.
Antioxidants (Basel) ; 10(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922463

RESUMO

Although the exact pathogenetic mechanisms leading to age-related macular degeneration (AMD) have not been clearly identified, oxidative damage in the retina and choroid due to an imbalance between local oxidants/anti-oxidant systems leading to chronic inflammation could represent the trigger event. Different in vitro and in vivo models have demonstrated the involvement of reactive oxygen species generated in a highly oxidative environment in the development of drusen and retinal pigment epithelium (RPE) changes in the initial pathologic processes of AMD; moreover, recent evidence has highlighted the possible association of oxidative stress and neovascular AMD. Nitric oxide (NO), which is known to play a key role in retinal physiological processes and in the regulation of choroidal blood flow, under pathologic conditions could lead to RPE/photoreceptor degeneration due to the generation of peroxynitrite, a potentially cytotoxic tyrosine-nitrating molecule. Furthermore, the altered expression of the different isoforms of NO synthases could be involved in choroidal microvascular changes leading to neovascularization. The purpose of this review was to investigate the different pathways activated by oxidative/nitrosative stress in the pathogenesis of AMD, focusing on the mechanisms leading to neovascularization and on the possible protective role of anti-vascular endothelial growth factor agents in this context.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...